Coenzyme Q\textsubscript{10} improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes

JM Hodgson1, GF Watts1*, DA Playford2, V Burke1 and KD Croft1

1University of Western Australia Department of Medicine and HeartSearch, Royal Perth Hospital, Perth, Western Australia, Australia; and 2Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia

Objective: Our objective was to assess effects of dietary supplementation with coenzyme Q\textsubscript{10} (CoQ) on blood pressure and glycaemic control in subjects with type 2 diabetes, and to consider oxidative stress as a potential mechanism for any effects.

Subjects and design: Seventy-four subjects with uncomplicated type 2 diabetes and dyslipidaemia were involved in a randomised double blind placebo-controlled 2\times2 factorial intervention.

Setting: The study was performed at the University of Western Australia, Department of Medicine at Royal Perth Hospital, Australia.

Interventions: Subjects were randomly assigned to receive an oral dose of 100 mg CoQ twice daily (200 mg/day), 200 mg fenofibrate each morning, both or neither for 12 weeks.

Main outcome measures: We report an analysis and discussion of the effects of CoQ on blood pressure, on long-term glycaemic control measured by glycated haemoglobin (HbA\textsubscript{1c}), and on oxidative stress assessed by measurement of plasma F\textsubscript{2}-isoprostanes.

Results: Fenofibrate did not alter blood pressure, HbA\textsubscript{1c}, or plasma F\textsubscript{2}-isoprostanes. There was a 3-fold increase in plasma CoQ concentration (3.4 ± 0.3 μmol/l, \(P < 0.001\)) as a result of CoQ supplementation. The main effect of CoQ was to significantly decrease systolic (\(-6.1 ± 2.6 \text{ mmHg}, P = 0.021\)) and diastolic (\(-2.9 ± 1.4 \text{ mmHg}, P = 0.048\)) blood pressure and HbA\textsubscript{1c} (\(-0.37 ± 0.17\%\), \(P = 0.032\)). Plasma F\textsubscript{2}-isoprostane concentrations were not altered by CoQ (0.14 ± 0.15 nmol/l, \(P = 0.345\)).

Conclusions: These results show that CoQ supplementation may improve blood pressure and long-term glycaemic control in subjects with type 2 diabetes, but these improvements were not associated with reduced oxidative stress, as assessed by F\textsubscript{2}-isoprostanes.

Sponsorship: This study was supported by a grant from the NH\&MRC, Australia. European Journal of Clinical Nutrition (2002) 56, 1137–1142. doi:10.1038/sj.ejcn.1601464

Keywords: coenzyme Q\textsubscript{10}; glycaemic control; blood pressure; oxidative stress; F\textsubscript{2}-isoprostanes

Introduction

Coenzyme Q\textsubscript{10} (CoQ) is a lipid-soluble molecule derived mainly from endogenous synthesis. It plays an essential role as an electron carrier in mitochondrial oxidative phosphorylation (Overvad \textit{et al}, 1999), and may have an important role as an antioxidant (Thomas \textit{et al}, 1999). Our objective here was to determine whether supplementation with CoQ could lower blood pressure and improve glycaemic control in a group of type 2 diabetic subjects. We have also explored oxidative stress as a potential mechanism for any observed effects.

The evidence for a benefit of CoQ on blood pressure is consistent, but limited. Several controlled intervention studies involving hypertensive patients have found that CoQ can lower blood pressure appreciably (Burke \textit{et al}, 2002; Singh \textit{et al}, 1999; Yamagami \textit{et al}, 1986; Digiesi \textit{et al}, 1990). The effect of CoQ on blood pressure in diabetic subjects has
not been explored. The results of controlled intervention studies that have assessed the effects of CoQ on glycaemic control in diabetic subjects are inconsistent (Singh et al., 1999; Eriksson et al., 1999; Henriksen et al., 1999), and further studies are needed. Supplementation with CoQ can result in the inhibition of LDL oxidisability ex vivo (Raitakari et al., 2000), but there is little evidence for an effect of CoQ to inhibit oxidative damage in vivo.

The present communication is part of a study that was designed to examine the effects of CoQ and fenofibrate on vascular function in type 2 diabetic subjects with dyslipidaemia. An effect of CoQ to improve endothelial dysfunction of the brachial artery in this population has been reported (Watts et al., 2002). We have assessed here the effect of CoQ supplementation on blood pressure, on long-term glycaemic control, monitored by measurement of HbA1c, and on oxidative stress assessed by measurement of plasma F2-isoprostane concentrations.

Methods

Subjects

Eighty subjects, 61 men and 19 women, with type 2 diabetes and dyslipidaemia were recruited from the community. Diabetes was defined as a non-fasting or post standardised oral glucose load plasma glucose concentration > 11.1 mmol/l on one occasion, or a fasting plasma glucose > 7 mmol/l on two occasions. Dyslipidaemia was defined as fasting serum triglycerides > 1.8 mmol/l or HDL < 1.0 mmol/l with a total cholesterol < 6.5 mmol/l and a total cholesterol: HDL cholesterol ratio > 4. Exclusion criteria included age > 75 y, body mass index > 40 kg/m2, history of myocardial infarction or stroke, insulin therapy, smoking, macroalbuminuria, serum creatinine > 150 μmol/l, abnormal liver or muscle enzymes, use of antioxidants, lipid-regulating therapy, angiotensin-converting enzyme inhibitors and calcium channel blockers, and blood pressure > 160/90 mmHg. The study was performed at the University of Western Australia, Department of Medicine at Royal Perth Hospital in Perth, Western Australia, Australia. The Royal Perth Hospital Ethics Committee approved the study and all subjects gave written informed consent.

Experimental design

A randomised double-blind placebo-controlled 2 × 2 factorial intervention of 12 weeks’ duration was performed in subjects with uncomplicated type 2 diabetes and dyslipidaemia. Eighty subjects completed the intervention and data were available on all variables of interest for 74 subjects. We report here an analysis and discussion of the main effects of CoQ on glycaemic control, blood pressure and oxidative stress. After a 6-week baseline period during which diet and body weight were monitored, subjects were randomly assigned to one of four groups: (1) 200 mg coenzyme Q10 (CoQ, Blackmores Laboratories, Sydney, Australia) and 200 mg fenofibrate (Laboratories Fournier, Dijon, France); (2) 200 mg CoQ and fenofibrate placebo; (3) CoQ placebo and 200 mg fenofibrate; and (4) CoQ placebo and fenofibrate placebo. Coenzyme Q10 was taken as 2 × 50 mg capsules twice daily, and fenofibrate was taken as a single dose of 200 mg in the morning. Matching placebos were used for both CoQ and fenofibrate. Subjects attended the department every 2 weeks to monitor compliance and ensure minimal body weight change.

Blood pressure

Blood pressures were measured at baseline and at the end of intervention using a Dinamap 1846SX/P oscillometric recorder (Criticon Inc., Tampa, Florida, USA). Subjects rested in the supine position for 5 min, then blood pressures and heart rate were measured on the right arm at 2-min intervals. The mean of all blood pressure measurements was calculated. Blood pressures were not disclosed to the subjects during the study.

Biochemistry

Venous blood samples were collected at baseline and at the end of intervention in the morning after a 12-h fast. For those tests not carried out immediately, serum and plasma was frozen at −80°C and thawed immediately prior to analysis. Urine samples were collected at the end of baseline and at the end of the 12-week intervention period. Aliquots of the urine samples were frozen at −80°C and thawed immediately prior to analysis.

Serum total cholesterol, triglycerides and HDL cholesterol were measured using enzymatic colorimetric methods (Boehringer Mannheim, Mannheim, Germany) on a Hitachi 917 analyser (Hitachi, Tokyo, Japan). High-density lipoprotein cholesterol was measured after precipitation of apolipoprotein B-100-containing particles with dextran sulphate. Low-density lipoprotein cholesterol was estimated by the Friedewald formula and by direct assay when triglycerides were more than 3.5 mmol/l. HbA1c was measured using a commercially available kit employing high performance liquid chromatography (HPLC, BioRad Laboratories, Sydney, Australia). Serum insulin was measured using an automated immuno-enzymometric assay (Tosoh Corp, Kyobashi, Tokyo, Japan). Plasma glucose was measured using Boehringer Mannheim reagents on a Hitachi 917 analyser (Hitachi Ltd, Tokyo, Japan).

Total serum CoQ concentration was measured in a subsample of the group by reverse-phase HPLC using electrochemical detection according to the method of Lang et al. (1986). F2-isoprostane concentrations were measured in plasma by gas chromatography-mass spectrometry using negative chemical ionisation (NCI). This method has been previously described in detail (Mori et al., 1999; Hodgson et al., 1999). Briefly, blood samples were collected into cold tubes containing reduced glutathione and centrifuged within 15 min at 1000 g for 10 min at 4°C. The plasma was

European Journal of Clinical Nutrition
The 74 subjects, 58 men and 16 women, who completed this 3.2-y study were aged 31.2 ± 7.5 y, with a mean age of 56.6 ± 1.5 y. Mean age was not different between men and women. Baseline and post-intervention values for variables are shown in Table 1. Also presented are the P-values for main effects of fenofibrate and coenzyme Q10 as between-group differences in post intervention values after adjusting for baseline values using general linear models as described in the statistical methods. There was no interaction between fenofibrate and coenzyme Q10 in any of the measured variables. The mean baseline and post intervention values for variables considered in the analysis were similar in the fenofibrate and coenzyme Q10 groups (P > 0.05). The intra-assay coefficient of variation for the measurement of F2-isoprostanes was 8%. The mean baseline plasma F2-isoprostane concentrations in the fenofibrate group (1.13 ± 0.12 nmol/l) and coenzyme Q10 group (1.09 ± 0.10 nmol/l) were not different. Coenzyme Q10 supplementation resulted in a significant effect of fenofibrate and coenzyme Q10 for any of these variables. Fenofibrate reduced plasma F2-isoprostane concentrations in the fenofibrate group (main effect 0.001, P = 0.021; Figure 1), and was associated with a significant decrease in plasma LDL cholesterol (main effect 0.001, P = 0.021; Figure 1). There was no significant effect of fenofibrate on other variables.

Table 1 Mean values at baseline and at the end of intervention for subjects completing the study. Results are means (s.e.m.). Interaction was not significant for any of these variables and P-values are shown for main effects of fenofibrate and coenzyme Q10, respectively.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo n=18</th>
<th>Placebo n=18</th>
<th>Coenzyme Q10 n=19</th>
<th>Coenzyme Q10 n=19</th>
<th>P-value for fenofibrate</th>
<th>P-value for coenzyme Q10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males/females (n)</td>
<td>13/5</td>
<td>14/4</td>
<td>17/2</td>
<td>14/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>55.2 (2.3)</td>
<td>53.6 (2.4)</td>
<td>52.3 (1.4)</td>
<td>51.7 (1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>87.5 (4.0)</td>
<td>88.9 (4.2)</td>
<td>91.2 (2.7)</td>
<td>88.2 (3.1)</td>
<td>0.278</td>
<td>0.350</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.3 (0.2)</td>
<td>5.5 (0.2)</td>
<td>5.3 (0.2)</td>
<td>5.2 (0.2)</td>
<td><0.001</td>
<td>0.748</td>
</tr>
<tr>
<td>Triglycerides (mmol/l)</td>
<td>2.3 (0.2)</td>
<td>2.6 (0.3)</td>
<td>2.2 (0.2)</td>
<td>3.0 (0.5)</td>
<td><0.001</td>
<td>0.421</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
<td>3.3 (0.2)</td>
<td>3.4 (0.2)</td>
<td>3.4 (0.2)</td>
<td>3.0 (0.5)</td>
<td><0.001</td>
<td>0.177</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.02 (0.03)</td>
<td>0.94 (0.04)</td>
<td>0.94 (0.03)</td>
<td>0.93 (0.04)</td>
<td><0.001</td>
<td>0.570</td>
</tr>
<tr>
<td>Plasma CoQ (mmol/l)</td>
<td>1.19 (0.11)</td>
<td>1.30 (0.14)</td>
<td>1.47 (0.09)</td>
<td>1.33 (0.17)</td>
<td>0.764</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>136.6 (3.7)</td>
<td>130.4 (4.6)</td>
<td>127.1 (4.2)</td>
<td>131.8 (3.5)</td>
<td>0.246</td>
<td>0.048</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>77.5 (2.2)</td>
<td>73.5 (1.7)</td>
<td>75.5 (2.2)</td>
<td>76.8 (1.7)</td>
<td>0.246</td>
<td>0.048</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>6.3 (0.3)</td>
<td>7.1 (0.4)</td>
<td>6.9 (0.3)</td>
<td>7.5 (0.5)</td>
<td><0.001</td>
<td>0.797</td>
</tr>
<tr>
<td>Blood glucose (mmol/l)</td>
<td>7.0 (0.4)</td>
<td>8.9 (0.9)</td>
<td>8.5 (0.7)</td>
<td>8.3 (0.8)</td>
<td>0.787</td>
<td>0.717</td>
</tr>
<tr>
<td>Serum insulin (mU/l)</td>
<td>15.2 (2.3)</td>
<td>14.8 (2.9)</td>
<td>12.6 (1.2)</td>
<td>10.7 (1.2)</td>
<td>0.223</td>
<td>0.290</td>
</tr>
<tr>
<td>Plasma isoprostane (nmol/l)</td>
<td>1.55 (0.13)</td>
<td>1.01 (0.11)</td>
<td>1.22 (0.13)</td>
<td>1.21 (0.11)</td>
<td>0.564</td>
<td>0.345</td>
</tr>
</tbody>
</table>

* n=9, n=11, n=11 and n=9 for placebo, fenofibrate, CoQ and fenofibrate + coenzyme Q10, respectively.
Effects of CoQ on systolic blood pressure, diastolic blood pressure and HbA1c remained significant after adjustment for age, sex and body weight.

Discussion

We have investigated here the effects of CoQ supplementation on blood pressure, long-term glycaemic control and lipid peroxidative damage. Subjects involved in this study had high-normal blood pressure and type 2 diabetes with good glycaemic control, although HbA1c was elevated above normal. Supplementation with CoQ resulted in a significantly lower systolic and diastolic blood pressure, and a significant improvement in long-term glycaemic control, monitored by measurement of HbA1c. Coenzyme Q10 did not influence oxidative stress, assessed by measurement of plasma F2-isoprostane concentrations.

Oxidative stress may contribute to raised blood pressure (Kittiyakara & Wilcox, 1998). This may be related to increased production of reactive oxygen species resulting in inactivation of endothelial-derived nitric oxide, increased vascular tone and raised blood pressure (Grunfeld et al, 1995).

The evidence that CoQ can lower blood pressure is consistent, but insufficient for any firm conclusions. Previous controlled intervention studies in humans involving small numbers suggest that CoQ supplementation can lower blood pressure in subjects with uncontrolled or poorly controlled hypertension (Singh et al, 1999; Yamagami et al, 1986; Digiesi et al, 1990). In all these studies, where subjects had blood pressures at baseline of >160/95, both systolic and diastolic blood pressure fell significantly. Yamagami et al (1986) found that CoQ resulted in a fall in blood pressure of 19/6mmHg in 20 subjects who received 100mg/day of CoQ or placebo for 12 weeks in a parallel designed study. Digiesi et al (1990) found that CoQ resulted in a fall in blood pressure of 11/8mmHg in 18 subjects who received 100mg/day CoQ or placebo in a 10-week crossover study. In another study, where 59 hypertensive subjects received 120mg/day CoQ or placebo for 8 weeks, CoQ resulted in a fall in blood pressure of 15/9mmHg (Singh et al, 1999). In addition, a recent study involving 76 older men and women with isolated systolic hypertension who received 120mg/day CoQ or placebo for 12 weeks found a significant fall in systolic blood pressure of 18mmHg (Burke et al, 2002).

These observed reductions in blood pressure in the range 10–20/5–10mmHg are remarkable, and if substantiated would be potentially important therapeutically.

In the present study we found a fall in blood pressure of about 6/3mmHg. These effects of CoQ are less than pre-

![Figure 1](image1.png)

Figure 1 Change in systolic blood pressure for those subjects not taking coenzyme Q10 (placebo and fenofibrate groups) and those subjects taking coenzyme Q10 (coenzyme Q10 and fenofibrate + coenzyme Q10 groups, values are mean±s.e.m.).

![Figure 2](image2.png)

Figure 2 Change in glycated haemoglobin for those subjects not taking coenzyme Q10 (placebo and fenofibrate groups) and those subjects taking coenzyme Q10 (coenzyme Q10 and fenofibrate + coenzyme Q10 groups, values are mean±s.e.m.).
Coenzyme Q10 in type 2 diabetes

JM Hodgson et al

used measurement of plasma F$_2$-isoprostanes as a marker of oxidative stress in vivo. F$_2$-isoprostanes, which are formed in vivo by the non-enzymatic free radical-induced peroxidation of arachidonic acid, are currently believed to be one of the best available markers of lipid peroxidation in vivo (Roberts & Morrow, 2000). Measurement of F$_2$-isoprostanes in plasma can be used to assess endogenous lipid peroxidation, and may provide a reliable indicator of oxidative stress in vivo (Roberts & Morrow, 2000; Lawson et al, 1999).

Coenzyme Q$_{10}$ might reduce oxidative stress by inhibiting generation of superoxide by mitochondria. This is an effect that may be particularly important in diabetic subjects (Nishikawa et al, 2000). Inhibition of oxidative damage in LDL (Thomas et al, 1999), improved insulin sensitivity (Bonnefont-Rousselot et al, 2000; West, 2000) and β-cell function (McCarty, 1999a) and lower blood pressure (Kittiyakara & Wilcox, 1998) may result in reduced oxidative stress, inhibition of oxidative damage in the arterial wall, and improved glycaemic control and lower blood pressure. We found no effect of CoQ supplementation on plasma F$_2$-isoprostane concentrations. This result does not support the proposed mechanism, but F$_2$-isoprostanes are only one marker of oxidative stress. If any effects are specific at the cellular or sub-cellular level, rather than more systemic, then circulating concentrations of F$_2$-isoprostanes may not change despite any reduction in oxidative stress. Therefore, effects of CoQ on oxidative stress cannot be ruled out. An alternative explanation is that CoQ lowers blood pressure and improves glycaemic control via mechanisms other than oxidative stress.

In diabetes, oxidative stress is maximal post-prandially (Anderson et al, 2001). The implications of this study for post-prandial oxidative stress in diabetes require future investigation. Future studies should also focus on the effects of CoQ on glycaemic control in diabetic subjects with poor control and on blood pressure in hypertension.

This study was designed to assess the effects of fenofibrate and CoQ on arterial function and blood lipids, and blood pressure and glycaemic control were secondary endpoints. The population was selected to have dyslipidaemia and vascular dysfunction, and hypertension and impaired glycaemic control were not entry criteria. Effects of CoQ might have been larger in subjects with elevated blood pressure and poor glycaemic control. In addition, because this was a 2×2 factorial study, there was the possibility of effects of fenofibrate. However, because there was no main effect of fenofibrate on blood pressure, glycaemic control and lipid peroxidation, or interaction of CoQ with fenofibrate, we were able to assess the main effects of CoQ.

In conclusion, the results of this study are consistent with the suggestion that supplementation of CoQ lowers blood pressure and improves long-term glycaemic control in type 2 diabetic subjects. However, our results do not provide support for the proposed mechanism involving reduced oxidative stress, as assessed using a marker of lipid peroxidative damage.
Acknowledgements
We are grateful to Ms Mary-Ann Powell for expert nursing assistance.

References